Định nghĩa chính thức Phân_phối_xác_suất

Mỗi biến ngẫu nhiên tạo ra một phân phối xác suất, phân phối này chứa hầu hết các thông tin quan trọng về biến ngẫu nhiên đó. Nếu X là một biến ngẫu nhiên, phân phối xác suất tương ứng gán cho đoạn [a, b] một xác suất P[a ≤ X ≤ b], nghĩa là, xác suất mà biến X sẽ lấy giá trị trong đoạn [a, b].

Phân phối xác suất của biến X có thể được mô tả một cách duy nhất bởi hàm phân phối tích lũy (cumulative distribution function) F(x) được định nghĩa như sau:

F ( x ) = Pr [ X ≤ x ] {\displaystyle F(x)=\Pr \left[X\leq x\right]}

với mọi x thuộc R.

Một phân phối được gọi là rời rạc nếu hàm phân phối tích lũy của nó bao gồm một dãy các bước nhảy hữu hạn, nghĩa là nó sinh ra từ một biến ngẫu nhiên rời rạc X: một biến chỉ có thể nhận giá trị trong một tập hợp hữu hạn hoặc đếm được nhất định. Một phân phối được gọi là liên tục nếu hàm phân phối tích lũy của nó là hàm liên tục, khi đó nó sinh ra từ một biến ngẫu nhiên X mà P[ X = x ] = 0 với mọi x thuộc R. Phân phối liên tục còn có thể được biểu diễn bằng hàm mật độ xác suất: một hàm f không âm khả tích Lebesgue được định nghĩa trên tập số thực như sau:

Pr [ a ≤ X ≤ b ] = ∫ a b f ( x ) d x {\displaystyle \Pr \left[a\leq X\leq b\right]=\int _{a}^{b}f(x)\,dx}

với mọi a và b.

Không có gì đáng ngạc nhiên về việc các phân phối rời rạc không có một hàm mật độ như vậy, nhưng có các phân phối liên tục, như phân phối cầu thang của quỷ (devil's staircase), cũng không có mật độ.

  • Giá của một phân phối là một tập đóng nhỏ nhất mà các phần tử của nó có xác suất bằng 0.
  • Phân phối xác suất của tổng hai biến ngẫu nhiên độc lập là tích chập (convolution) của các phân phối của chúng.
  • Phân phối xác suất của hiệu hai biến ngẫu nhiên là tương quan chéo (cross-correlation) của các phân phối của chúng.